Logo Foto


Prof Dr Lynn Heller
GeometrieWerkstatt
Institut für Differentialgeometrie
Welfengarten 1
30167 Hannover

Office: b 408
Telephone: +49-0511-762 3897
E-mail: lynn.heller@math.uni-hannover.de


Informationen über den Mathematikkurs für Flüchtlinge finden Sie hier.

Here is my Curriculum Vitae.

I am member of the Priority Program " Geometry at infinity " funded by the DFG.



Research


My research lies in the field of Global Surface Geometry. I am investigating constrained Willmore tori, i.e., critical points of the Willmore energy with prescribed conformal class, and CMC surfaces (of higher genus) using the Integrable Systems approach, where moduli spaces of flat connections naturally appear.

I am particularly interested in the interplay between Algebraic Geometric data of the surfaces coming from Integrable Systems (e.g., Higgs bundles, spectral curves) and their analytic properties (e.g., non degeneracy and stability) studied in Geometric Analysis.

In my thesis I classified equivariant constrained Willmore tori in the 3-sphere under supervision of Prof. Dr. F. Pedit.



Teaching

SS 19: Riemannsche Flächen und komplexe Differentialgeometrie

WS 18/19: Riemannsche Geometrie

SS 18: Harmonische Abbildungen, Analysis B

WS 17/18: Riemannsche Flächen

SS 17: Klassische Differentialgeometrie

SS 16: Gewöhnliche Differentialgleichungen

SS 15: Klassifikation kompakter Flächen

WS 15/16: Quaternionische Flächentheorie



Publications


Preprints

  1. With Sebastian Heller and Martin Traizet
    Area estimates for high genus Lawson surfaces via DPW. 31 pages, preprint: arXiv:1907.07139, 2019.

  2. With Sebastian Heller and Cheikh Birahim Ndiaye
    Isothermic constrained Willmore tori in the 3-space. 19 pages, preprint: arXiv:1903.11823, 2019.

  3. With Sebastian Heller and Cheikh Birahim Ndiaye
    Stability properties of 2-lobed Delaunay tori in the 3-sphere. 14 pages, preprint: preprint: arXiv:1903.11830, 2019.

  4. With Sebastian Heller
    Higher solutions of Hitchin's self-duality equations.
    42 pages, preprint: arXiv:1801.02402, 2018.

  5. With Cheikh Birahim Ndiaye
    Candidates for non-rectangular constrained Willmore minimizers. 35 pages, preprint: arXiv:1902.09572, 2017

  6. With Cheikh Birahim Ndiaye
    First explicit constrained Willmore minimizers of non-rectangular conformal class.
    43 pages, preprint: arXiv:1710.00533, 2017.

  7. With Sebastian Heller and Nicholas Schmitt
    Exploring the Space of Compact Symmetric CMC Surfaces.
    Preprint: arXiv:1503.07838, 2015.


Accepted and published

  1. With Sebastian Heller and Nicholas Schmitt:
    Navigating the Space of Symmetric CMC Surfaces. Accepted for publication in
    Journal of Differential Geometry, 37 pages.
    Preprint: arXiv:1501.01929

  2. With Franz Pedit
    Towards a constrained Willmore conjecture. Accepted for publication.
    Preprint: arXiv:1705.03217

  3. Dirac Tori. Differ. Geom. Appl., vol. 54, Part A, pp. 122-128, 2017.
    Preprint: arXiv:1401.7449

  4. With Sebastian Heller and Nicholas Schmitt
    The spectral curve theory for (k,l)-symmetric CMC surfaces. J. Geom. Phys., vol 98, pp 201-213, 2015.
    Preprint: arXiv:1503.00969

  5. With Sebastian Heller
    Abelianization of Fuchsian systems on a 4-punctured sphere and applications. J. Symplect. Geom., vol. 14, no. 4, pp. 1059-1088, 2016.
    Preprint: arXiv:1404.7707

  6. Constrained Willmore and CMC tori in the 3-sphere. Differ. Geom. Appl., vol. 40, pp 232-242, 2015.
    Preprint: arXiv:1212.2068

  7. Equivariant Constrained Willmore Tori in the 3-Sphere. Math. Z., vol. 278, no. 3, pp 955-977, 2014.
    Preprint: arXiv:1211.4137

  8. Constrained Willmore Tori and Elastic Curves in 2-Dimensional Space Forms. Comm. Anal. Geom., vol. 22, no. 2, pp 343-369, 2014.
    Preprint: arXiv:1303.1445

  9. Constrained Willmore Hopf tori.
    Oberwolfach Reports, vol. 10, no. 2., 2013.

  10. Equivariant Constrained Willmore Tori in S^3. PhD Thesis, Eberhard Karls University Tübingen, 2012.